
Abstract. The key concepts from H.A. Kramers' in¯u-
ential work on noise-assisted escape of a particle bound
in a potential well are summarized, as is the extensive
impact that these ideas have had on the development of
condensed-phase reaction-rate theories in the twentieth
century.

Key words: Kramers theory ± Reaction dynamics ±
Solvent e�ects ± Stochastic processes ± Escape over a
potential barrier

In April 1940, H.A. Kramers published his work entitled
``Brownian motion in a ®eld of force and the di�usion
model of chemical reactions'' [1]. This work, which
appears to have generated little activity at the time [2],
was, many years later, to become one of the most
in¯uential contributions to reaction-rate theory in the
twentieth century. The prominence of Kramers' work is
re¯ected in the titles of two recent reviews on the current
status of condensed-phase reaction-rate theory: ``Reac-
tion-rate theory: ®fty years after Kramers'' and ``New
trends in Kramers' reaction-rate theory''.

In his seminal work (as it is frequently called), Kra-
mers treated the escape over a potential barrier by
a particle undergoing Brownian motion, i.e. thermal
noise-assisted escape [1]. Hence, his focus was on the
e�ect of the medium ± solvent or bath gas ± on the solute
reaction rate. While much of the physical chemistry
community was at the time focused on the rate of re-
action of an isolated molecule ± and would remain so
occupied for many years to come, Kramers' work was
not completed in a vacuum. Indeed, Lindemann, Rice
and Ramsperger, Kassel, Slater, Christiansen, and oth-
ers had already published their collision-rate-based the-
ories of the role of the bath gas in promoting chemical
reactions in low-density gases [3, 4]. Thus, one must ask,

what is it that distinguishes Kramers' article? What new
ideas and new results within his article have given his
work such a prominent place in modern rate theory?

First, Kramers recognized that the motion of the
solvent molecules could be modeled according to the
theory of Brownian motion, i.e. according to the Lan-
gevin equation, within which the solvent is described by
its viscosity and a random force term. Such a stochastic
equation for the solute variables (p; q) can be reformu-
lated as either a di�usion or a master equation for the
probability distribution of the solute variables [P�p; q�],
leaving open many routes to the solution of the reaction
problem [5]. Indeed, Kramers himself chose the di�u-
sion-equation approach, devising a speci®c Fokker±
Planck equation, now known as the Kramers±Klein
equation, for the purpose. Yet, Kramers' choice of a
Brownian description for the reacting solute had much
more far-reaching consequences in that it enabled Kra-
mers to describe the e�ect of the solvent over a broad
range of conditions, from the very low viscosities ex-
pected in low-density gases to the high viscosities ex-
pected in liquids. This description stands in contrast to
the earlier collision theories, which are applicable only
under the single-collision conditions of low-density
gases. Kramers' work thus introduced into the reaction
dynamics community the novel idea that solvent motion,
i.e. thermal noise, could a�ect solute reaction rates in
high-density solvents, as well as in low-density gases.

Although Kramers' description applies to all viscosity
regimes, Kramers was only able to solve for the reaction
rate in the limits of very low and very high viscosities
(which, in itself, was no small feat). Kramers found that
at low viscosities the reaction rate is controlled by the
rate of energy di�usion (consistent with collision theo-
ries) and rises as k / g, where k is the rate constant and g
is the viscosity. At high viscosities, Kramers indeed un-
covered a thermal-noise e�ect, ®nding that the rate is
controlled by spatial di�usion of the particle (i.e. of the
reaction coordinate) and falls o� as k / gÿ1 with in-
creasing viscosity. These two ®ndings comprise the main,
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and far-reaching, result of Kramers' paper. They suggest
that with increasing solvent viscosity the reaction rate
should ®rst increase (energy-di�usion-limited regime),
pass through a turnover, and then subsequently decrease
with further increases in viscosity (spatial-di�usion-
limited regime), a behavior which has been veri®ed via
experiment and simulation, and is now referred to as the
``Kramers turnover'' [3, 6, 7].

Kramers ®nal coup d'eÂ tat in this work was a recasting
of his rate expressions in terms of the then newly de-
veloped transition-state theory [8, 9], which has since
become the most prominent rate theory in chemistry. In
both limits Kramers was able to cast his result in terms
of a multiplicative prefactor to the transition-state the-
ory result. I note that the ``transition-state method'' to
which Kramers compared takes only the solute degrees
of freedom into consideration. Only some 40 years later
was it recognized that multidimensional variational-
transition-state theory [10], inclusive of all the solvent
degrees of freedom, can reproduce the Kramers result
in the high-viscosity, spatial-di�usion-limited regime
[11±13].

In spite of, or perhaps because of, the novel, far-
reaching conclusions of Kramers' work, it was largely
neglected for 30±40 years. Indeed, authorative books on
chemical reaction dynamics, such as that by Moore and
Pearson [4], make no mention of Kramers' work or the
ideas contained therein. An important exception to this
neglect was Chandrasekhar's application of Kramers'
work to the astrophysical problem of star clusters in
1943 [14], as much of Chandrasekhar's work was, in
turn, to later in¯uence the chemical dynamics commu-
nity. The works of Bak in the 1960s, pursuing Kramers'
idea of applying di�usion equations to activated chem-
ical reactions, also appear to have been in¯uential [15,
16]. Yet, during the period 1940±1970, most chemical
studies of reactions in low-density gases concentrated on
the aforementioned strong-collision models and the
development of important extensions thereof, most im-
portantly RRKM theory [4, 17]. It was only much later
that Kramers' ``weak collision'' energy-di�usion model
was considered and the relationship between the strong-
and weak-collision models was elucidated [18]. Similarly,
in the high-viscosity, solution-phase limit, the chemical
community (with the exception of Brinkman [19] and
Takeyama [20]) primarily concerned itself with the e�ect
of solvation free energies on the reaction activation
barrier, an e�ect which, the astute reader will notice,
is completely absent from the treatment of Kramers.
Within Kramers' formalism, such solvation-induced
changes in the barrier height would be hidden within the
simple transition-state-theory rate to which Kramers'
results provide a prefactor correction. However, it was
many years before it was recognized that solvation
e�ects on solute reaction rates can be formally separated
into activation free-energy (potential of mean force)
and dynamical (thermal-noise induced) e�ects [21], both
of which will typically vary with changing solvent
viscosity.

Extensive interest in Kramers' work by the chemical
community had to wait until the late 1970s, early 1980s,
when technological advances ± fast pulsed lasers and

computers ± provided the ability to probe the micro-
scopic details of solution-phase reaction dynamics, thus
enabling the study of noise-induced ``dynamical'' e�ects
in liquids. A key paper in stimulating this renewed in-
terest was that of Grote and Hynes [16], in which the
Kramers result in the high-viscosity limit was rederived
(along with an extension to time-dependent friction).

Once Kramers' work returned to the public eye, the
approximations and restrictions inherent in Kramers
theory came under close scrutiny. These are

1. An assumption that the microscopic friction c�t�,
exerted by the solvent on the solute reaction coordi-
nate, can be approximated by the viscosity of the bulk
¯uid, g:

2. An assumption that the solvent moves rapidly with
respect to the solute, such that the solvent friction
acts e�ectively instantaneously, i.e. c�t� � gd�t�, with
d�t� the Dirac delta function.

3. The neglect of anharmonic terms in the solute
potential of mean force (also known as nonlinearity
and ®nite-barrier e�ects).

4. The restriction to a 1-dimensional (1D) solute.
5. The lack of a solution to the rate expression in the

intermediate-viscosity ``turnover'' region.
6. The neglect of quantum e�ects.

By the late 1980s, development of theoretical exten-
sions of Kramers' result, along with numerical (via
computer simulation) and experimental tests, had be-
come a cottage industry, as is evidenced by the 700-plus
references cited in the review in Ref. [3]. These exten-
sions came from both the chemistry and the physics
communities and were developed from an extremely
broad arsenal of formalisms [2, 3, 7].

Here I list just a small sample from the number of
things about condensed-phase rate theory that have
been learned from the past two decades of intense ac-
tivity on this problem (I give only representative ref-
erences, as there are far too many to list here). From
studies of 1D model solutes coupled to a solvent bath,
for example, we have learned that at intermediate vis-
cosities, the spatial-di�usion e�ect typically becomes
important before the energy-di�usion e�ect becomes
negligible, a behavior which is greatly magni®ed in
slowly relaxing solvents [22]. Consequently, the simple
1D transition-state-theory estimate of the rate is rarely,
if ever, accurate for these model systems, even at in-
termediate viscosities [22]. Additionally, new methods
have been developed for predicting rates in the di�cult
intermediate-viscosity regime [23, 24], where simple in-
terpolation schemes have been shown to fail [25]. We
now know that the viscosity of the bulk ¯uid is often
a poor approximation to the microscopic friction [26],
although how to determine the microscopic friction
without resorting to computer simulation [27] remains
an open question. We have also learned that Kramers'
delta-function friction, which assumes rapid solvent
motion, is a poor approximation for many chemical
systems [28, 29], and that a slow solvent relaxation can
greatly reduce the e�ect of the solvent, either in pro-
moting (low viscosity) [22, 33] or hindering (high vis-
cosity) [16, 30] the reaction. Numerous methods have
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been developed for the incorporation of nonlinear, ®-
nite-barrier e�ects [3, 31], as have been methods to
enable the microscopic friction to depend upon the
reaction coordinate [32]. The e�ect of strongly coupled
solute degrees of freedom has been examined, demon-
strating that such strongly coupled modes enhance the
rapidity with which the energy-di�usion-limited rate
increases with increasing solvent friction [18] and can
also lead to interesting spatial di�usion behaviors, such
as saddle-point avoidance [33]. The transition from
weakly to strongly coupled solute modes is an area of
current investigation [34, 35], as is the incorporation of
quantum e�ects, even though this latter topic has
already seen extensive attention for well over a decade
[36]. Finally, on a more practical note, it has become
clear that only the spatial-di�usion regime is accessed
in liquids, whereas only energy-di�usion behavior is
typically found in gases; it is only in intermediate-
density supercritical ¯uids that the turnover behavior is
observed [26, 37]. Another hard-earned lesson has been
that uncharacterized changes in the activation barrier,
which generally occur simultaneously with changes in
the viscosity (be they due to density changes or to
changed chemical interactions), almost always inexo-
rably cloud the extraction of dynamic solvent e�ects
from the data. Indeed, spatial-di�usion e�ects in liquids
typically alter the rate by a factor less than 10, whereas
(at 298K) activation-energy changes alter the rate by
an order of magnitude per kilocalorie/mole. Yet, if a
factor of 2 accuracy is to be achieved in the prediction
of reaction rates in condensed phases [7] such Kramers
e�ects will require proper evaluation.

Given the successes of the past two decades, what
does the future hold for Kramers' reaction-rate theories?
In addition to continued work on the di�cult problem
of quantum e�ects in condensed media, I believe that
the need to understand reactivity in a broad range of
complex systems will drive the development of new
extensions to the Kramers' method. In fact, such
application-driven extensions have already begun to
appear, such as the extension to nonstationary friction
kernels, c��t0 � s� ÿ �t � s�� 6� c�t0 ÿ t�, for thermosetting
polymers [38], to multiple correlated barrier crossings
for surface reactions in the energy-transfer-limited
regime [39, 40], and to ¯uctuating barriers for modeling
the kinetics of ion channels [41]. Thus, the ideas of
Kramers are likely to be moved forward into the next
century like a coat of many colors, being continually
directed into new dimensions which have not yet entered
our thoughts, but will arise naturally from new and
varied complex applications.
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